Marker-assisted selection in back cross progenies for transfer of bacterial leaf blight resistance genes into a popular lowland rice cultivar

DK Nayak¹, E pandit^{*1}, S Mohanty¹, DP Barik² and SK Pradhan¹

¹ICAR-National Rice Research Institute, Cuttack-753006, Odisha, India ²Ravenshaw University, Cuttack, Odisha, India. *Email: elsambio@gmail.com

ABSTRACT

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. Oryzae (Xoo) is a wide spread disease of rice and causes significant yield losses. BB is predominant in lowland and waterlogged ecology. Many rice cultivars have been pyramided with resistant-gene combinations such as xa5, xa13 and Xa21 with durable resistance to BB. In this study, the target genes Xa21, xa13 and xa5 were selected in backcross progenies of Jalmagna and Swarna BB pyramid line using the markers pTA248, RG136 and xa55,R (multiplex) during foreground selection. In foreground screening of BC₁F₁ progenies, fifteen plants were obtained with three BB resistant genes (xa5, xa13 and Xa21). The parents were screened with 236 rice microsatellite markers covering all the chromosomes to be used for background recovery of recurrent genome in the backcross progenies. Out of these markers, 120 were observed to be polymorphic for the two parents. Among the polymorphic markers, 60 best distinguishing markers were selected for background selection in the backcross progenies. As high as 85% recurrent genome content was observed in a foreground screened BC₁F₁ plant in background selection of the backcross progenies.

Key words: Low land rice, Bacterial leaf blight, marker assisted selection, BB resistance gene pyramiding

Rice serves as a major carbohydrate source for nearly half of the world's population. In India, rice production area is around 43 million hectares. Rice accounts for 42% of food grain production and 55% of cereal production in India. With continuous increase in population, the food grain requirement is also increasing. India has to produce 135-140 million tons of rice by 2030. Many biotic and abiotic factors are limiting the rice production. Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. Oryzae (Xoo) is a wide spread disease of rice causing significant losses. In some areas of Asia, it can reduce crop yield by 50% (Khush et al., 1989) or even up to 80% (Singh et al., 1977). Lowland and deep water ecology is a challenging ecology to increase rice productivity. BB is more common in this ecology reducing the yield to a greater extent. To counter the fast evolving pathogen and have eco-friendly management of BB, employment of cultivars carrying multiple resistance genes is an important approach. Till date 40 BB resistant genes are identified (Kim et al 2015). Out of these, eleven genes are recessive (xa5, -xa5(t), xa8, xa13, xa15, xa19,xa20, xa24, xa28, xa31 and xa32) and rest are dominant. Out of these genes, nine resistant-genes Xa1, Xa3/Xa26, xa5, Xa10, xa13, Xa21, Xa25, Xa27 and Xa38 have been cloned successfully following mapbased cloning strategy (Han et al., 2014; Bhasin, et al., 2012; Chu et al., 2006; Singh et al., 2001). Now-adays, marker-assisted selection (MAS) provides more advantage to detect the transferred resistance genes during the breeding program precisely and easily using molecular markers. Molecular markers can increase the efficiency of backcrossing by allowing selection of genotypes with the maximum percentage of recurrent parent genome and minimizing linkage drag (Hospital, 2005). Based on marker-assisted selection, many rice cultivars have been pyramided with R-genes such as xa5, xa13 and Xa21 (Singh et al. 2001), Xa4, xa5 and Xa21 (Jung, et al. 2013). Jalmagna is a popular variety with good yield under waterlogged condition but

susceptible to BB. The present study targets introgression of three BB resistance genes into Jalmagna background and development of BB resistant popular rice cultivar for deep water ecology by using marker assisted backcross strategy.

MATERIALS AND METHODS

The donor parent CRMAS 2232-85 contained three BB resistance genes xa5, xa13 and Xa21 in the background of mega variety Swarna. The donor parent was developed at National Rice Research Institute (NRRI), Cuttack, India (Pradhan et al. 2015). The recurrent parent was Jalmagna, a highly popular variety of deepwater ecosystem of India but highly susceptible to bacterial blight disease. Jalmagna was hybridized with CRMAS 2232-85 and F_1 plants were backcrossed with recipient parent Jalmagna to produce BC₁F₁. Selection based on foreground and background for identification of lines that were similar to the recurrent parent possessing the three BB resistance genes.

Mini scale DNA isolation for PCR analysis was carried out as per Dellaporta et al. (1983). The PCR reaction mixture contained 50ng templates DNA, 5 pico mole of each of the primers, 200 μ M dNTPs, 1 X PCR buffer (10 mM Tris–HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, and 0.01 mg/ml gelatin) and 0.6 unit of Taq DNA polymerase in a volume of 20 μ l and amplification of target sequences were as per earlier reports (Table 1). The list of rice microsatellite markers used for parent polymorphism study for background selection (Table 2). The PCR products of STS marker RG 136 were digested with restriction enzymes *Hinf*I as per manufacturer's instructions. The PCR products and the DNA fragments produced by restriction digestions were separated by gel electrophoresis and gel images were analyzed on gel documentation system (SynGene).

RESULTS AND DISCUSSION

Swarna pyramided line (CRMAS 2232-85) contained three BB resistance genes (xa5, xa13 and Xa21) where as Jalmagna is a deepwater rice variety but highly susceptible to bacterial leaf blight. The parent polymorphism study can differentiate the donor and recipient parent at molecular level showing the presence/absence of particular genes or alleles. The parent polymorphism survey was carried out for the donor (CRMAS 2232-85) and recurrent parent (Jalmagna) for the three target genes Xa21, xa13 and xa5 using the markers pTA248, RG136 and xa5S,R (multiplex) for their use in foreground selection in the marker assisted backcross program (Table 1). The parents were polymorphic with respect to these three genes. This is because of absence of the resistance genes in the recurrent parent, Jalmagna. In addition, the parents were screened with 236 rice microsatellite markers (Table 2) covering all the chromosomes to be used for background recovery of recurrent genome in the backcross progenies. Out of these markers, 120 were polymorphic for the two parents (Table 3). Among the polymorphic markers, clearly distinguishing best 60 markers were selected for background selection in the backcross progenies. Α representative electrophoregram of parent polymorphism survey for background selection is depicted in Figure 1.

01	counig						
Resistance gene	Chromosome number	Marker	Primer sequences used Forward(5'-3')	for gene detection Reverse(5'-3')	Expected size (bp)	Band type	Reference
xa5	5	xa5S (Multiplex)	GTCTGGAATTT GCTCGCGTTCG	TGGTAAAGTAGATA CCTTATCAAACTGGA	410bp, 310bp, 180bp	STS	Sundaram <i>et al.</i> ,2011
		xa5SR/R (Multiplex)	AGCTCGCCATTC AAGTTCTTGAG	TGACTTGGTTCT CCAAGGCTT			
xa13	8	RG136	TCCCAGAAAG CTACTACAGC	GCAGACTCCAG TTTGACTTC	530bp, 490bp	STS	Huang <i>et al.</i> ,1997
Xa21	11	pTA248	AGACGCGGAAGG GTGGTTCCCGGA	AGACGCGGTAA TCGAAGATGAAA	1000bp	STS	Huang <i>et al.</i> ,1997

 Table 1. Markers used for foreground selection of three bacterial blight resistance genes in marker-assisted backcross

 breeding

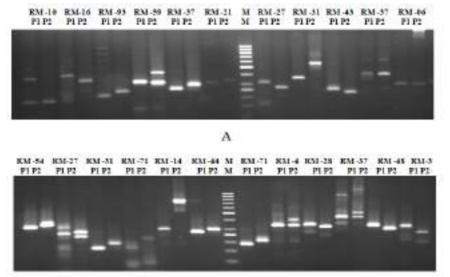
Oryza Vol. 52 No.3, 2015 (163-172)

Chrom#	Total No. of microsatellite markers	No. of polymorphic markers		Percentage of polymorphic markers
1	25	11	SSR09, SSR 31, SSR 60 ,SSR 71, RM23, RM48, RM212, RM272,	
			RM575, RM428, RM488	44
2	24	12	SSR11, SSR 14, SSR 44 ,SSR 71 ,SSR 85, RM154, RM211, RM233A,	
			RM263, RM475, RM45, RM530	50
3	21	10	SSR 06, SSR 13, SSR 18, SSR 45, SSR 85, SSR 93, RM16, RM130,	
			RM218, RM203	47.62
4	18	12	SSR 04, SSR 10, SSR 19, SSR 32, SSR 40, RM241, RM307, RM401,	
			RM55, RM471, RM518, RM470.	66.66
5	19	12	SSR 05, SSR 13, SSR 21, SSR 27, SSR 34, SSR 37, SSR 43, SSR 50, SSR 3	59,
			RM164, RM592, RM440.	63.16
6	20	10	SSR 21, SSR 31, SSR 54, RM225, RM276, RM340, RM402, RM586,	
			RM589, RM588.	50
7	21	9	SSR 28, SSR 37, SSR 41, SSR 44, RM10, RM336, RM560, RM432,	
			RM346	42.86
8	20	10	SSR 14, SSR 48, RM223, RM241, RM407, RM3395, RM6208,	
			RM22550, RM22506, RM8271	50
9	16	7	SSR 40, SSR 42, RM219, RM242, RM257, RM410, RM3555.	43.75
10	17	9	SSR 03, SSR 06, SSR 11, SSR 25, SSR 30, RM171, RM216, RM333,	
			RM330.	52.94
11	18	11	SSR 3, SSR 4, SSR 11, SSR 27, RM21, RM144, M202, RM206,	
			RM209, RM260, RM287.	61.11
12	17	7	SSR 23, SSR 26, SSR 36, RM17, RM195, RM415, RM23.	41.18
Total	236	120		

Table 3. Polymorphic markers detected by parent polymorphism study

The recipient and donor parents were hybridized and 600 F_1 seeds were generated. True hybridity of the F_1 plants was tested by using the markers pTA248, RG136 and xa5S,R for the three target genes as well as two rice microsatellite markers (Figure 2). The F_1 plants possessing alleles from both the parents were carried forward for backcrossing with the recurrent parent Jalmagna to get BC₁F₁ seeds. The marker assisted selection helped in selecting the true hybrids and avoiding the selfed plants. Singh et al. (2001) also reported similar results.

BC₁F₁ plants were tested with primers pTA248, RG136 and xa5S,R closely linked to BLB resistance genes, *Xa21*, *xa13* and *xa5* respectively. Out of 344 BC₁F₁ plants, 108 BC₁F₁ plants showed the presence of *Xa21* resistance gene specific bands (1000bp) while 116 plants showed the presence of *xa13* resistance gene specific bands (490bp and 530bp) (Table 4). One hundred twenty BC₁F₁ plants showed the presence of *xa5* resistance gene specific bands (160bp). Based on the amplification of resistance specific bands, 48 BC₁F₁ plants showed the presence of *Xa21* and *xa13* resistance genes while 41 BC₁F₁ plants showed the presence of Xa21 and xa5 resistance genes (Table 5). Fifty one BC₁F₁ plants showed the presence of xa13 and xa5 resistance genes. Only fifteen plants were positive for all the three BB resistance genes (Xa21, xa13 and xa5). Figure 3 shows representative electrophoregram for foreground screening of the BC₁F₁ plants.


These plants possessing the three BB resistance genes were screened with the 60 polymorphic rice microsatellite markers in order to identify the plant having highest recurrent genome content. The detailed result of the background selection has been presented in Table 6. After this background selection, BC₁F₁ plant No.07 showed highest percentage (85%) of recurrent genome. Because of the non-survival of this particular plant, further breeding programme was carried out with plant No.127 having 81.7% of recurrent genome. The advantage of marker assisted selection over the conventional breeding here was that we are able to select the plant with 85% of genome content that can be used for next generation backcrossing. But in conventional breeding the average genome content will be 75% in BC_1F_1 and the plant

Sl. No.	Chrom#	Name of hypervariable markers	Sl. No.	Chrom#	Name of hypervariable markers	Sl. No.	Chrom#	Name of hypervariable markers
1	1	SSR07	80	4	RM241	159	8	RM241
2	1	SSR09	81	4	RM307	160	8	RM337
3	1	SSR13	82	4	RM335	161	8	RM339
1	1	SSR24	83	4	RM401	162	8	RM407
5	1	SSR31	84	4	RM470	163	8	RM433
5	1	SSR41	85	4	RM471	164	8	RM3395
7	1	SSR60	86	4	RM518	165	8	RM6208
3	1	SSR65	87	4	RM537	166	8	RM8271
)	1	SSR05 SSR71	88	4	RM551	167	8	RM22506
10	1	SSR79	89	5	SSR02	168	8	RM22550
11	1	SSR85	90	5	SSR02 SSR05	169	9	SSR02
12	1	RM 9	91	5	SSR03	170	9	SSR02 SSR10
12	1	RM23	92	5	SSR15 SSR21	170	9	SSR10 SSR24
13	1	RM23 RM48	92	5	SSR21 SSR27	171	9	SSR24 SSR39
14			93 94	5	SSR27 SSR34	172	9	SSR40
	1	RM212	94 95	5	SSR34 SSR37	173 174	9	SSR40 SSR42
16	1	RM259						
17	1	RM272	96 07	5	SSR43	175	9	SSR45
18	1	RM283	97	5	SSR50	176	9	RM105
19	1	RM428	98	5	SSR59	177	9	RM201
20	1	RM488	99	5	RM26	178	9	RM219
21	1	RM495	100	5	RM164	179	9	RM242
22	1	RM575	101	5	RM233B	180	9	RM257
23	1	RM578	102	5	RM267	181	9	RM285
24	1	RM3453	103	5	RM289	182	9	RM410
25	1	RM10017	104	5	RM440	183	9	RM566
26	2	SSR3	105	5	RM459	184	9	RM3555
27	2	SSR11	106	5	RM480	185	10	SSR03
28	2	SSR14	107	5	RM592	186	10	SSR06
29	2	SSR27	108	6	SSR09	187	10	SSR11
30	2	SSR31	109	6	SSR13	188	10	SSR15
31	2	SSR33	110	6	SSR16	189	10	SSR21
32	2	SSR37	111	6	SSR21	190	10	SSR25
33	2	SSR44	112	6	SSR25	191	10	SSR30
34	2	SSR56	113	6	SSR31	192	10	SSR35
35	2	SSR66	114	6	SSR40	193	10	SSR42
36	2	SSR71	115	6	SSR46	194	10	RM171
37	2	SSR73	116	6	SSR54	195	10	RM216
38	2	SSR73	117	6	SSR63	196	10	RM269
39	2	SSR94 SSR85	117	6	SSR74	197	10	RM209 RM311
40	2	RM6	119	6	RM204	198	10	RM310 RM330
+0 41	2	RM154	119	6	RM225	198	10	RM333
+1 42	2	RM211	120	6	RM276	200	10	RM342A
+2 13	2	RM233A	121		RM276 RM340	200 201	10	RM342A RM484
				6				
14 1 <i>5</i>	2	RM236	123	6	RM402	202	11	SSR03
45 16	2	RM263	124	6	RM494	203	11	SSR04
16 17	2	RM475	125	6	RM586	204	11	SSR11
47 40	2	RM485	126	6	RM588	205	11	SSR13
18	2	RM526	127	6	RM589	206	11	SSR19
19	2	RM530	128	7	SSR04	207	11	SSR23
50	3	SSR6	129	7	SSR05	208	11	SSR27
51	3	SSR10	130	7	SSR13	209	11	SSR28
52	3	SSR13	131	7	SSR23	210	11	SSR75
53	3	SSR18	132	7	SSR28	211	11	RM21

Table 2. List of markers used for survey of parental polymorphism

Oryza Vol. 52 No.3, 2015 (163-172)

Sl. No.	Chrom#	Name of hypervariable markers	Sl. No.	Chrom#	Name of hypervariable markers	Sl. No.	Chrom#	Name of hypervariable markers
54	3	SSR21	133	7	SSR37	212	11	RM144
55	3	SSR30	134	7	SSR41	213	11	RM202
56	3	SSR45	135	7	SSR44	214	11	RM206
57	3	SSR64	136	7	RM10	215	11	RM209
58	3	SSR71	137	7	RM11	216	11	RM224
59	3	SSR85	138	7	RM18	217	11	RM260
60	3	SSR93	139	7	RM180	218	11	RM286
61	3	RM16	140	7	RM234	219	11	RM287
62	3	RM130	141	7	RM248	220	12	SSR09
63	3	RM203	142	7	RM336	221	12	SSR10
64	3	RM218	143	7	RM346	222	12	SSR11
65	3	RM422	144	7	RM429	223	12	SSR16
66	3	RM426	145	7	RM432	224	12	SSR18
67	3	RM442	146	7	RM478	225	12	SSR20
68	3	RM514	147	7	RM505	226	12	SSR23
69	3	RM517	148	7	RM560	227	12	SSR26
70	3	RM570	149	8	SSR14	228	12	SSR36
71	4	SSR4	150	8	SSR16	229	12	SSR43
72	4	SSR10	151	8	SSR28	230	12	RM17
73	4	SSR19	152	8	SSR40	231	12	RM19
74	4	SSR21	153	8	SSR41	232	12	RM20
75	4	SSR27	154	8	SSR45	233	12	RM101
76	4	SSR32	155	8	SSR48	234	12	RM117
77	4	SSR38	156	8	RM38	235	12	RM235
78	4	SSR40	157	8	RM210	236	12	RM415
79	4	SSR49	158	8	RM223			

в

Fig. 1. (A, B) Polymorphism survey of parents CRMAS2232-85 and Jalmagna with rice microsatellite markers M- 50 bp DNA ladder, P1-CRMAS2232-85, P2-Jalmagna

Numbers on the top of the gel indicate the polymorphic hyper variable rice microsatellite markers

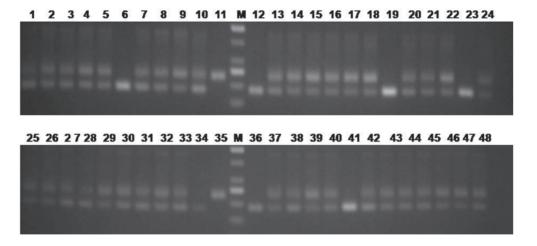


Fig.2. True hybridity test of F_1 progenies using the marker RM16.

Table 4. BC1F1	plants having	single BLB	resistance gene

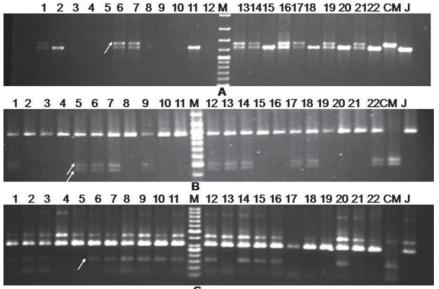

Sl. No	Gene	No. of BC1F1	Plant No.
1	Xa21	108	1,6,7,9,13,14,16,19, 21, 24, 26,28, 32,38,40,42,44,47,53,59,60,61,62, 66,69,70,75,78, 80,85,91,93,95,105,111,112, 114,115,116,117, 119,125,127,128,129, 132,140,143,145, 150, 152, 158,163,170, 175,177,1 82,186,187,193, 194,196,198,199,200,201,203, 206, 207, 208, 210,212,214,216,218,219,221, 222, 226, 229, 230,231, 233,236,239,240,242, 244, 248, 252, 254, 255,256, 258, 260, 263,264,266,273, 277, 286, 291, 293, 300, 302, 304, 307, 319.
2	Xa13	116	1,5,6,7,9,12,13,14,17,18,22,24,28,29,30, 32,33,36, 37,40,41,45, 46,47,48,51,52, 53,54,56, 57, 58, 60,66,68,69,70,71,72,79, 81,84,93, 100,113,114,115, 121,124,127,128,130,137,147, 153,158, 163,164,166,167,168,170,174,175,180,181,1 82,186,187, 188,190, 191,193, 195, 201, 203, 207, 208,211,212,213,214,218,224,225,226,227, 228,229,230,233,235,237, 240,241,242,246,247,248,250,252, 253,257, 262, 263, 264,269,271, 273,275,282, 294, 302, 309, 313, 317.
3 124,	Xa5	120	2,3,6,7,8,9,10,11,12,14,15,16,20, 25, 27, 28,29,30,31,33,36,37,38,41,46,48,51,54,55,58, 62, 64, 65,67,70,71,76,7,7,78,79,80,81,82,91,95,101,106,110,111,112,113,115,1,17,118,123, 125, 127,130, 133,134,136,138,147,159,160,161,175,183,184,189,190,193, 197,199, 200, 205,207,210,211,213,221,222,223,224,225,226,227,232,234,236,237,239, 240,243, 244, 245, 246, 247,250,251,252,253,257,258,259,260,263, 266,268,271,272,273,282, 289,293, 299,307,312,317.

Table 5. BC ₁ F ₁	plants having BLB	resistance genes combination

Gene combination	No. of BC ₁ F ₁	Plants No.
Xa21-xa13	48	1,6,7,13,14, 17, 24,28,32,40,47,53, 60,66,69,70,113,114,115,117,127,128,158, 163,170,175,182,186, 187,193, 201,203,207, 208,212,214,218,226,230,233,240,242,248,252,263,264,273,302.
Xa21-xa5	41	6,7,14, 16, 28,38,62,70,80,85,91,95, 111,112,115,117,125,127, 175,193, 199,200, 207, 210,221,222, 226, 236,237,239,240,244,252,256,258,260,263,266,273,293,307.
Xa13-xa5	51	6,7,9,12,14, 28, 29,30,33,36,37,41,46,48,51,54, 58,70, 71,79,81,115,124,127,130, 134,147,175, 182, 190,193, 207, 211,213,224,225,226,227,237,240,246,247,250,252,253,257,263,271,273,282,317.
Xa21-xa13-xa5	15	6, 7, 14, 28, 70,115, 127, 175, 193, 207, 226, 240, 252, 263, 273

Table 0. Background selection of the BUIF1 plants having three BB resistance genes	ground sei	lection of t	ne BUIF	plants r	laving thi	ce BB r	esistance	genes									
ORG NO	9	7	14	28	70	115	127	175	193	207	226	240	252	263	273		
Primers	1	2	б	4	5	9	7	8	6	10	11	12	13	14	15	cr	jal
hyv1-31	IJ	JJ	IJ	CJ	CJ	CJ	CJ	ſſ	CJ	C	CJ	CJ	IJ	IJ	CJ	CC	JJ
HYv1-71	IJ	JJ	CJ	IJ	IJ	JJ	CJ	IJ	JJ	IJ	CJ	JJ	IJ	IJ	CJ	CC	JJ
HYV1-60	IJ	JJ	IJ	CJ	IJ	C	JJ	C	JJ	IJ	CJ	CJ	IJ	JJ	CJ	CC	JJ
HYV2-14	CI	JJ	CJ	IJ	IJ	CJ	IJ	CJ	CJ	CJ	CJ	CJ	JJ	JJ	CJ	CC	JJ
HYV1-30	IJ	JJ	CJ	JJ	CI	CJ	IJ	CJ	JJ	IJ	CJ	JJ	C	CJ	CJ	CC	JJ
HYV5-27	IJ	JJ	CJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	C	JJ	JJ	CC	JJ
HYV5-43	CJ	JJ	CJ	CJ	JJ	CJ	JJ	CJ	JJ	CJ	JJ	CJ	CJ	CJ	JJ	CC	JJ
HYV6-54	CJ	CJ	CJ	JJ	CI	JJ	JJ	CJ	JJ	CJ	CJ	JJ	C	CJ	CJ	CC	JJ
HYV5-59	IJ	CJ	CJ	JJ	IJ	CJ	CJ	CJ	JJ	IJ	CJ	JJ	C	C	CJ	CC	JJ
RM336	IJ	CJ	CJ	CJ	CI	CJ	CJ	CJ	CJ	IJ	CJ	CJ	C	CJ	CJ	CC	JJ
RM488	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	JJ	C	CJ	CJ	CC	JJ
RM530	C	JJ	CJ	IJ	CJ	CJ	JJ	IJ	JJ	IJ	JJ	JJ	JJ	IJ	JJ	CC	JJ
HYV3-85	IJ	JJ	IJ	IJ	IJ	JJ	JJ	IJ	JJ	IJ	IJ	JJ	JJ	IJ	JJ	CC	JJ
HYV4-19	C	JJ	CJ	JJ	ſſ	JJ	JJ	IJ	CJ	IJ	JJ	JJ	C	JJ	JJ	CC	JJ
HYV4-32	CI	CJ	IJ	CJ	IJ	IJ	IJ	CI	CJ	IJ	JJ	JJ	C	JJ	IJ	CC	JJ
HYV11-11	IJ	JJ	CJ	IJ	CJ	IJ	CJ	CJ	JJ	CJ	CJ	IJ	JJ	JJ	CJ	CC	JJ
HYV7-28	ſſ	IJ	C	IJ	ſſ	ſſ	IJ	C	C	ſſ	IJ	CI	ſſ	JJ	IJ	CC	JJ
HYV3-93	[[]]	C :	LL ;	: C	G	G	ſſ	JJ	ſſ	G	G	ll ;	JJ	G	CC CC	JJ
HYVII-13	[[۲۲ ۱۱	[[LL I	5	5	5	Cf 1	r č	5	5	ſſ	۲ ۲	۲۲ ۱۱	5		۲۲ ۲
KM10 DM307	11 11	11 11	r J	ר נ	5 =	3 =	55	ff	55	55	55	ſſ	r [ה נ	55		f f
0.000MD			35	3 =	11 11	rr 11	5 =		35	3 =	3 =	۲۲ 11	35	55	5 =		11
RM144	5 =	35	35		r 1	rr II		۲ ۲	55	r C			55	3 =			۲۲ ۱۱
RM330	n II	5 5	ΰ II	5 E	ů II	s II	0 II	5	5 C	5 5	55	ů II	5 5	, II	55		IT IT
RM263	C :	JJ	ſſ	C	: IJ	C :	ſſ	ſſ	J.J	C	C	C	5	C :	C	S	ſſ
RM276	IJ	JJ	CJ	CJ	IJ	JJ	JJ	CJ	JJ	CJ	JJ	JJ	C	JJ	JJ	CC	JJ
RM401	IJ	JJ	CJ	JJ	JJ	IJ	JJ	CJ	CJ	JJ	CJ	CJ	JJ	JJ	CJ	CC	JJ
RM333	IJ	JJ	IJ	IJ	CJ	JJ	JJ	CJ	CJ	CJ	JJ	JJ	JJ	IJ	JJ	CC	JJ
RM415	IJ	JJ	CJ	CJ	ſſ	C	JJ	IJ	JJ	C	JJ	CJ	C	CJ	JJ	CC	JJ
RM428	CJ	CJ	CJ	CJ	JJ	CI	JJ	ſſ	JJ	CJ	CJ	CJ	C	CJ	CJ	CC	JJ
RM219	CJ	JJ	IJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	JJ	CJ	CJ	CC	JJ
HYV12-18	CJ	JJ	CJ	JJ	CJ	CJ	CJ	IJ	JJ	CJ	CJ	CJ	JJ	JJ	CI	CC	JJ
HYV11-3	IJ	JJ	CJ	IJ	IJ	CJ	IJ	CJ	CJ	CJ	CJ	CJ	IJ	IJ	CJ	CC	JJ
HYV8-14	IJ	C	CJ	CJ	IJ	IJ	IJ	IJ	C	C	CJ	JJ	C	IJ	CJ	CC	IJ
HYV7-37	C	L :	: C	G	: C	ll j	: C	: C	J.J	LL :	: C	JJ	G	ll I	: C	200	ll :
HYV8-48	3	ر ر 	۲۲ ۲	5	۲۲ ۲	3	ر ر 	رر ع	ſſ	رل ع	رر ع	5	3	3	۲ ۲		ſſ
HYV5-37	: C	ſſ	G	: 5	: C	ff ;	ff	56	ff ;	5	G	G	IL j	C	G	CC CC	lt ;
KM218	[[L ç	55	LL T	LL II	ſ	: : :	5 C	T T	3:	33	: :	5 C	33	5 C		LL
RM410 DM2555	Cf I	3 =	35	[[C 1	3=	5	3=	3 =	[<u></u>	3=	ſſ	3=	3=	3=		
RM340	50	5	3 =	5 1	5	r II	5 =	r II	rr II		5 5		r 17	rr IT	5 17	ן נ <u>ו</u>	rr Fr
	3	;		5	5	2	2	2	2	5	5	2	5	2	5)	

	jal	JJ	IJ	JJ	JJ	JJ	JJ	JJ	JJ	JJ	JJ	JJ	IJ	JJ	JJ	JJ	JJ	IJ	JJ	JJ			
	cr	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC										
273	15	CJ	CJ	CJ	CJ	JJ	JJ	CJ	CJ	CJ	JJ	CJ	CJ	CJ	CJ	CJ	CJ	IJ	CJ	CJ	78	65	
263	14	JJ	JJ	CJ	JJ	JJ	CJ	JJ	CJ	CJ	CJ	JJ	JJ	JJ	CJ	JJ	CJ	CJ	JJ	CJ	95	79.2	
252	13	CJ	JJ	JJ	C	JJ	C	JJ	C	C	JJ	CJ	CJ	JJ	C	JJ	CJ	CJ	JJ	C	86	71.7	
240	12	CJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	95	79.2	
226	11	CJ	CJ	CJ	CJ	JJ	JJ	CJ	CJ	CJ	JJ	CJ	CJ	CJ	CJ	CJ	CJ	JJ	CJ	CJ	78	65	
207	10	JJ	IJ	CJ	CJ	CJ	JJ	JJ	CJ	CJ	CJ	JJ	IJ	CJ	CJ	JJ	CJ	IJ	IJ	CJ	88	73.3	
193	6	JJ	JJ	JJ	CJ	CJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	CJ	CJ	CJ	CJ	CI	JJ	JJ	94	78.3	
175	8	CI	CJ	JJ	JJ	CI	CI	CI	C	JJ	CI	JJ	JJ	C	C	JJ	JJ	CJ	C	C	86	71.7	
127	7	JJ	IJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	CJ	JJ	IJ	CJ	JJ	CJ	CJ	IJ	CJ	JJ	98	81.7	
115	9	JJ	JJ	JJ	C	JJ	JJ	C	JJ	JJ	C	JJ	JJ	JJ	JJ	C	C	JJ	C	JJ	93	77.5	
70	S	C	CJ	JJ	C	C	JJ	JJ	C	C	JJ	C	CJ	JJ	JJ	C	C	JJ	JJ	C	92	76.7	
28	4	JJ	JJ	CJ	CJ	CJ	JJ	CJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	JJ	CJ	JJ	CJ	JJ	92	76.7	
14	ю	CJ	CJ	JJ	CJ	JJ	CJ	CJ	CJ	JJ	JJ	CJ	JJ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	LL	64.2	
7	2	JJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	JJ	CJ	JJ	JJ	CJ	CJ	JJ	JJ	CJ	JJ	JJ	102	85	
9	1	CJ	IJ	CJ	CJ	JJ	IJ	CJ	JJ	JJ	CJ	JJ	IJ	JJ	JJ	CJ	CJ	IJ	CJ	JJ	94	78.3 75.60	
RG NO	Primers	RM592	RM588	RM223	RM241	RM171	RM180	RM427	HYV2-18	HYV3-13	HYV5-43	HYV9-42	HYV10-30	HYV12-26	RM287	RM235	RM21	RM216	RM444	RM475		PERCENTAGE AVERAGE	

C Fig 3. (A, B, C). PCR amplification of markers linked to resistance genes, *Xa21*, *xa13* and *xa5* using primers A) pAT248,

B) RG136 and C) xa5S and xa5R/R, respectively. Lanes on the top of the gel shows the BC, F, plant no. CM- CRMAS 2232-85,

selected might possess even less genome content than the average where there may necessity of more number of backcrossing in order to attain required recurrent genome content. Many earlier successful studies on marker assisted backcrossing in rice were reported with less number of generations (Singh *et al.* 2001; Shanti *et al.*, 2001; Bharatkumar *et al.*, 2008; Sundaram *et al.*, 2008; Rajpurohit *et al.*, 2011; Dokku et al., 2013; Suh *et al.*, 2013; Jung *et al.*, 2013).

J-Jalmagna, M-Molecular weight marker. Arrow indicates tolerant band.

Marker-assisted backcrossing using functional markers reduce the risk of false selection in recombination between the molecular marker and the gene of interest. We were successful in identifying superior recombinations for three BB resistance genes (*Xa21, xa13 and xa5*) in BC₁F₁ generation. Using background selection, breeding generation can be reduced due to selection of high recurrent genome content plant in early generation. Further backcrossing programme with the gene introgression lines will lead to development of a BB resistant cultivar in Jalmagna background that can be more popular in lowland ecology than the recurrent parent.

ACKNOWLEDGMENTS

The authors are highly grateful to the Director, National

Rice Research Institute, and Head, Crop Improvement Division, National Rice Research Institute Cuttack for providing all the necessary facilities. The work was supported by a grant from Department of Biotechnology, Govt. of India.

REFERENCES

- Bharatkumar S, paulrajRSD ,Brindha PV, Kavitha S and Gnanamanickam SS 2008. Improvent of bacterial blight resistance in rice cultivars ajayothi and IR50 via marker-assisted backcross breeding J Crop Improve 21:101-116.
- Bhasin H, Bhatia D, Raghuvanshi S, Lore SJ, Gurpreet K, Sahi KG, Kaur B, Vikal Y and Singh K 2012. New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice Mol Breeding 30:607–611.
- Chu Z Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen L, Zhang Q and Wang S. 2006. Targeting *xa13*, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 112: 455-461.
- Dellaporta SL, Wood J and Hicks JB 1983. A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21.
- Dokku P, Das KM and Rao GJN 2013. Pyramiding of four resistance genes of bacterial blight in Tapaswini,

an elite rice cultivar, through marker-assisted selection. Euphytica 192:87–96.

- Han X, Yang Y, Wang X, Zhou J, Zhang W, Yu C, Cheng C, Cheng Y, Yan C and Chen 2014. Quantitative Trait Loci Mapping for Bacterial Blight Resistance in Rice Using Bulked Segregant Analysis. Int. J. Mol. Sci. 15: 11847-11861; doi: 10.3390/ijms150711847.
- Hospital F 2005. Selection in backcross programmes .Phil Trans R Soc.360:1503-1511.
- Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadevil N, Bennett J and Khush GS. 1997. Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320.
- Jung P, Ji UJ, Tae HN, Young CC, So HP, Hyun SP, Mun SS, Chung KK and Jena KK 2013. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.Rice.6: 5.
- Khush GS, Mackill DJ and Sidhu GS 1989. Breeding rice for resistance to bacterial blight, In Proceeding of the International Workshop on Bacterial blight of Rice. International Rice Research Institute, Manila, Philippines pp. 207-177.
- Kim SM, Jung SP, Yang Q, Tae NH, Russel FR, Jena KK 2015. Identification and fine mapping of a new resistant gene,Xa40, conferring resistance to bacterial blight races in rice(Oryza sativa L.).Theor Appl Genet 128:1933-1943.
- Pradhan SK, Nayak DK, Pandit E, Barik SR, Mohanty SP, Anandan A and Reddy JN 2015. Characterization of morpho-quality traits and validation of bacterial blight resistance in pyramided rice genotypes under various hotspots of India. Australian Journal of Crop Science 9(2):127-134.

- Rajpurohit D, Kumar R, Kumar M, Paul P, Awasthi AA, Basha PO, Puri A, Jhang T, Singh K, and Dhaliwal HS.2011. Pyramiding of two bacterial blight resistance and a semi dwarfing gene in Type 3 Basmati using markerassisted selection. Euphytica 178:111–126.
- Shanti ML, George MLC, Vera Cruz CM, Bernardo MA, Nelson RJ, Leung H, Reddy JN and Sridhar R 2001. Identification of resistance genes effective against bacterial leaf blight pathogen in eastern India. Plant Disease 85:506–512.
- Singh GP, Srivastaba MK, Singh RV and Singh RM. 1977. Variation and qualitative losses caused by bacterial blight in different rice varieties. Indian Phytopathol. 30: 180-185
- Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS and Khush GS 2001 Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015.
- Suh JP, Jeung JU, Noh TH, Cho YC, Park SH, Park HS, Shin MS, Kim CK and Jena KK 2013.Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:5.
 - Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Rani NS, Sarma NP and Sonti RV. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety.Euphytica 160:411–422.
- Sundaram RM, Laha GS, Viraktamath BC, Sujatha K, Natarajkumar P, Hari Y, Srinivasa Rao K, Reddy CS, Balachandran SM, Madhav MS, Hajira SK, Rani NS, Vishnupriya MR and Sonti RV 2011. Marker Assisted Breeding For Development Of Bacterial Blight Resistant Rice. In: Muralidharan K, Siddiq EA (eds) Genomics and Crop Improvement: Relevance and Reservations, Institute of Biotechnology, Acharya NG Ranga Agricultural University, Hyderabad 500 030, India. pp 154–182.